Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.967
1.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Article En | MEDLINE | ID: mdl-38725852

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Lipopolysaccharides , Neoplastic Stem Cells , SOX9 Transcription Factor , Humans , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Female , Lipopolysaccharides/pharmacology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Up-Regulation , Signal Transduction , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Gene Expression Regulation, Neoplastic
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731867

Interleukin-4 (IL4) is a Th2 cytokine that can signal through two different receptors, one of which-the type II receptor-is overexpressed by various cancer cells. Previously, we have shown that type II IL4 receptor signaling increases proliferation and metastasis in mouse models of breast cancer, as well as increasing glucose and glutamine metabolism. Here, we expand on those findings to determine mechanistically how IL4 signaling links glucose metabolism and histone acetylation to drive proliferation in the context of triple-negative breast cancer (TNBC). We used a combination of cellular, biochemical, and genomics approaches to interrogate TNBC cell lines, which represent a cancer type where high expression of the type II IL4 receptor is linked to reduced survival. Our results indicate that type II IL4 receptor activation leads to increased glucose uptake, Akt and ACLY activation, and histone acetylation in TNBC cell lines. Inhibition of glucose uptake through the deletion of Glut1 ablates IL4-induced proliferation. Additionally, pharmacological inhibition of histone acetyltransferase P300 attenuates IL4-mediated gene expression and proliferation in vitro. Our work elucidates a role for type II IL4 receptor signaling in promoting TNBC progression, and highlights type II IL4 signaling, as well as histone acetylation, as possible targets for therapy.


Cell Proliferation , Epigenesis, Genetic , Triple Negative Breast Neoplasms , Humans , Female , Cell Line, Tumor , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Interleukin-4/metabolism , Interleukin-4/genetics , Signal Transduction , Glucose/metabolism , Receptors, Interleukin-4/metabolism , Receptors, Interleukin-4/genetics , Gene Expression Regulation, Neoplastic , Acetylation , Disease Progression , Animals , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics
3.
PLoS Genet ; 20(5): e1011236, 2024 May.
Article En | MEDLINE | ID: mdl-38722825

Patients with ER-negative breast cancer have the worst prognosis of all breast cancer subtypes, often experiencing rapid recurrence or progression to metastatic disease shortly after diagnosis. Given that metastasis is the primary cause of mortality in most solid tumors, understanding metastatic biology is crucial for effective intervention. Using a mouse systems genetics approach, we previously identified 12 genes associated with metastatic susceptibility. Here, we extend those studies to identify Resf1, a poorly characterized gene, as a novel metastasis susceptibility gene in ER- breast cancer. Resf1 is a large, unstructured protein with an evolutionarily conserved intron-exon structure, but with poor amino acid conservation. CRISPR or gene trap mouse models crossed to the Polyoma Middle-T antigen genetically engineered mouse model (MMTV-PyMT) demonstrated that reduction of Resf1 resulted in a significant increase in tumor growth, a shortened overall survival time, and increased incidence and number of lung metastases, consistent with patient data. Furthermore, an analysis of matched tail and primary tissues revealed loss of the wildtype copy in tumor tissue, consistent with Resf1 being a tumor suppressor. Mechanistic analysis revealed a potential role of Resf1 in transcriptional control through association with compound G4 quadruplexes in expressed sequences, particularly those associated with ribosomal biogenesis. These results suggest that loss of Resf1 enhances tumor progression in ER- breast cancer through multiple alterations in both transcriptional and translational control.


Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Animals , Mice , Female , Humans , G-Quadruplexes , Genes, Tumor Suppressor , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Neoplasm Metastasis
4.
BMC Cancer ; 24(1): 566, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711004

BACKGROUND: Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS: Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS: The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS: In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.


BRCA1 Protein , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic , Resveratrol , Triple Negative Breast Neoplasms , Resveratrol/pharmacology , Resveratrol/therapeutic use , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Receptors, Estrogen/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use
5.
J Clin Invest ; 134(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38747288

Triple-negative breast cancer (TNBC) presents a formidable challenge in oncology due to its aggressive phenotype and the immunosuppressive nature of its tumor microenvironment (TME). In this issue of the JCI, Zhu, Banerjee, and colleagues investigated the potential of targeting the OTU domain-containing protein 4 (OTUD4)/CD73 axis to mitigate immunosuppression in TNBC. They identified elevated CD73 expression as a hallmark of immunosuppression in TNBC. Notably, the CD73 expression was regulated by OTUD4-mediated posttranslational modifications. Using ST80, a pharmacologic inhibitor of OTUD4, the authors demonstrated the restoration of cytotoxic T cell function and enhanced efficacy of anti-PD-L1 therapy in preclinical models. These findings underscore the therapeutic potential of targeting the OTUD4/CD73 axis in TNBC.


5'-Nucleotidase , Protein Processing, Post-Translational , Triple Negative Breast Neoplasms , Tumor Microenvironment , Humans , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , 5'-Nucleotidase/immunology , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Tumor Microenvironment/immunology , Female , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Animals
6.
PLoS One ; 19(5): e0303433, 2024.
Article En | MEDLINE | ID: mdl-38743676

Triple-negative breast cancer (TNBC) demands urgent attention for the development of effective treatment strategies due to its aggressiveness and limited therapeutic options [1]. This research is primarily focused on identifying new biomarkers vital for immunotherapy, with the aim of developing tailored treatments specifically for TNBC, such as those targeting the PD-1/PD-L1 pathway. To achieve this, the study places a strong emphasis on investigating Ig genes, a characteristic of immune checkpoint inhibitors, particularly genes expressing Ig-like domains with altered expression levels induced by "cancer deformation," a condition associated with cancer malignancy. Human cells can express approximately 800 Ig family genes, yet only a few Ig genes, including PD-1 and PD-L1, have been developed into immunotherapy drugs thus far. Therefore, we investigated the Ig genes that were either upregulated or downregulated by the artificial metastatic environment in TNBC cell line. As a result, we confirmed the upregulation of approximately 13 Ig genes and validated them using qPCR. In summary, our study proposes an approach for identifying new biomarkers applicable to future immunotherapies aimed at addressing challenging cases of TNBC where conventional treatments fall short.


Biomarkers, Tumor , Immunotherapy , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Immunotherapy/methods , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism
7.
Sci Rep ; 14(1): 11057, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744942

Circulating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically comprises thousands of gene expression reads per cell, which artificial intelligence algorithms can accurately analyze. This work presents machine-learning-based classifiers that differentiate CTCs from peripheral blood mononuclear cells (PBMCs) based on single cell RNA sequencing data. We developed four tree-based models and we trained and tested them on a dataset consisting of Smart-Seq2 sequenced data from primary tumor sections of breast cancer patients and PBMCs and on a public dataset with manually annotated CTC expression profiles from 34 metastatic breast patients, including triple-negative breast cancer. Our best models achieved about 95% balanced accuracy on the CTC test set on per cell basis, correctly detecting 133 out of 138 CTCs and CTC-PBMC clusters. Considering the non-invasive character of the liquid biopsy examination and our accurate results, we can conclude that our work has potential application value.


Breast Neoplasms , Machine Learning , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/blood , Single-Cell Analysis/methods , Leukocytes, Mononuclear/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/diagnosis , Sequence Analysis, RNA/methods , Algorithms , Biomarkers, Tumor/genetics
8.
Cancer Immunol Immunother ; 73(7): 117, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713229

BACKGROUND: Estrogen receptor (ER) positive human epidermal growth factor receptor 2 (HER2) negative breast cancer (ER+/HER2-BC) and triple-negative breast cancer (TNBC) are two distinct breast cancer molecular subtypes, especially in tumor immune microenvironment (TIME). The TIME of TNBC is considered to be more inflammatory than that of ER+/HER2-BC. Natural killer (NK) cells are innate lymphocytes that play an important role of tumor eradication in TME. However, studies focusing on the different cell states of NK cells in breast cancer subtypes are still inadequate. METHODS: In this study, single-cell mRNA sequencing (scRNA-seq) and bulk mRNA sequencing data from ER+/HER2-BC and TNBC were analyzed. Key regulator of NK cell suppression in ER+/HER2-BC, S100A9, was quantified by qPCR and ELISA in MCF-7, T47D, MDA-MB-468 and MDA-MB-231 cell lines. The prognosis predictability of S100A9 and NK activation markers was evaluated by Kaplan-Meier analyses using TCGA-BRAC data. The phenotype changes of NK cells in ER+/HER2-BC after overexpressing S100A9 in cancer cells were evaluated by the production levels of IFN-gamma, perforin and granzyme B and cytotoxicity assay. RESULTS: By analyzing scRNA-seq data, we found that multiple genes involved in cellular stress response were upregulated in ER+/HER2-BC compared with TNBC. Moreover, TLR regulation pathway was significantly enriched using differentially expressed genes (DEGs) from comparing the transcriptome data of ER+/HER2-BC and TNBC cancer cells, and NK cell infiltration high/low groups. Among the DEGs, S100A9 was identified as a key regulator. Patients with higher expression levels of S100A9 and NK cell activation markers had better overall survival. Furthermore, we proved that overexpression of S100A9 in ER+/HER2-cells could improve cocultured NK cell function. CONCLUSION: In conclusion, the study we presented demonstrated that NK cells in ER+/HER2-BC were hypofunctional, and S100A9 was an important regulator of NK cell function in ER+BC. Our work contributes to elucidate the regulatory networks between cancer cells and NK cells and may provide theoretical basis for novel drug development.


Breast Neoplasms , Calgranulin B , Killer Cells, Natural , Receptors, Estrogen , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Calgranulin B/genetics , Calgranulin B/metabolism , Receptors, Estrogen/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Tumor Microenvironment/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Prognosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
9.
Cell Biochem Funct ; 42(4): e4020, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702967

The regulatory potential of long noncoding RNA (lncRNA) FBXL19-AS1 has been highlighted in various cancers, but its effect on triple-negative breast cancer (TNBC) remains unclear. Here, we aimed to elucidate the role of FBXL19-AS1 in TNBC and its underlying mechanism. RT-qPCR was employed to detect the expressions of FBXL19-AS1 and miR-378a-3p in tissues and cells. Immunohistochemical staining and western blot were utilized to detect the expression levels of proteins. Cell activities were detected using flow cytometry, CCK-8, and transwell assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were deployed to investigate interactions of different molecules. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathways were used to analyze the downstream pathway. In vivo xenograft model was conducted to detect the effect of FBXL19-AS1 on tumor growth. FBXL19-AS1 was overexpressed in TNBC tissues and cell lines compared with counterparts. FBXL19-AS1 knockdown suppressed TNBC cell activities, whereas its overexpression exhibited the opposite effect. Mechanistically, FBXL19-AS1 was found to interact with miR-378a-3p. Further analysis revealed that miR-378a-3p exerted tumor-suppressive effects in TNBC cells. Additionally, miR-378a-3p targeted and downregulated the expression of ubiquitin aldehyde binding 2 (OTUB2), a deubiquitinase associated with TNBC progression. In vivo experiments substantiated the inhibitory effects of FBXL19-AS1 knockdown on TNBC tumorigenesis, and a miR-378a-3p inhibitor partially rescued these effects. The downstream pathway of the miR-378a-3p/OTUB2 axis was explored, revealing connections with proteins involved in modifying other proteins, removing ubiquitin molecules, and influencing signaling pathways, including the Hippo signaling pathway. Western blot analysis confirmed changes in YAP and TAZ expression levels, indicating a potential regulatory network. In summary, FBXL19-AS1 promotes exacerbation in TNBC by suppressing miR-378a-3p, leading to increased OTUB2 expression. The downstream mechanism may be related to the Hippo signaling pathway. These findings propose potential therapeutic targets for TNBC treatment.


MicroRNAs , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Deubiquitinating Enzymes/metabolism , F-Box Proteins/metabolism , F-Box Proteins/genetics , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics
10.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710705

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Argininosuccinate Synthase , Cell Proliferation , Phosphoglycerate Dehydrogenase , Serine , Triple Negative Breast Neoplasms , Phosphoglycerate Dehydrogenase/metabolism , Phosphoglycerate Dehydrogenase/genetics , Serine/metabolism , Serine/biosynthesis , Humans , Female , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Animals , Argininosuccinate Synthase/metabolism , Argininosuccinate Synthase/genetics , Cell Line, Tumor , Mice, Nude , Ubiquitination , Mice , Glycine/metabolism
11.
Cell Death Dis ; 15(5): 310, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697967

Breast cancer (BC) is the most common cancer and the leading cause of cancer-related deaths in women worldwide. The 5-year survival rate is over 90% in BC patients, but once BC cells metastasis into distal organs, it is dramatically decreasing to less than 30%. Especially, triple-negative breast cancer (TNBC) patients usually lead to poor prognosis and survival because of metastasis. Understanding the underline mechanisms of TNBC metastasis is a critical issue. Non-coding RNAs, including of lncRNAs and microRNAs, are non-protein-coding transcripts and have been reported as important regulators in TNBC metastasis. However, the underline mechanisms for non-coding RNAs regulating TNBC metastasis remain largely unclear. Here, we found that lncRNA MIR4500HG003 was highly expressed in highly metastatic MDA-MB-231 TNBC cells and overexpression of MIR4500HG003 enhanced metastasis ability in vitro and in vivo and promoted MMP9 expression. Furthermore, we found MIR4500HG003 physically interacted with miR-483-3p and reporter assay showed miR-483-3p attenuated MMP9 expression. Importantly, endogenous high expressions of MIR4500HG003 were correlated with tumor recurrence in TNBC patients with tumor metastasis. Taken together, our findings suggested that MIR4500HG003 promotes metastasis of TNBC through miR-483-3p-MMP9 signaling axis and may be used as potential prognostic marker for TNBC patients.


Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 9 , MicroRNAs , Neoplasm Metastasis , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Cell Line, Tumor , Animals , Mice , Mice, Nude , Cell Movement/genetics , Mice, Inbred BALB C
12.
J Transl Med ; 22(1): 423, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704606

BACKGROUND: Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are known to play a crucial role in the growth, migration, recurrence, and drug resistance of tumor cells, particularly in triple-negative breast cancer (TNBC). This study aims to investigate stemness-related lncRNAs (SRlncRNAs) as potential prognostic indicators for TNBC patients. METHODS: Utilizing RNA sequencing data and corresponding clinical information from the TCGA database, and employing Weighted Gene Co-expression Network Analysis (WGCNA) on TNBC mRNAsi sourced from an online database, stemness-related genes (SRGs) and SRlncRNAs were identified. A prognostic model was developed using univariate Cox and LASSO-Cox analysis based on SRlncRNAs. The performance of the model was evaluated using Kaplan-Meier analysis, ROC curves, and ROC-AUC. Additionally, the study delved into the underlying signaling pathways and immune status associated with the divergent prognoses of TNBC patients. RESULTS: The research identified a signature of six SRlncRNAs (AC245100.6, LINC02511, AC092431.1, FRGCA, EMSLR, and MIR193BHG) for TNBC. Risk scores derived from this signature were found to correlate with the abundance of plasma cells. Furthermore, the nominated chemotherapy drugs for TNBC exhibited considerable variability between different risk score groups. RT-qPCR validation confirmed abnormal expression patterns of these SRlncRNAs in TNBC stem cells, affirming the potential of the SRlncRNAs signature as a prognostic biomarker. CONCLUSION: The identified signature not only demonstrates predictive power in terms of patient outcomes but also provides insights into the underlying biology, signaling pathways, and immune status associated with TNBC prognosis. The findings suggest the possibility of guiding personalized treatments, including immune checkpoint gene therapy and chemotherapy strategies, based on the risk scores derived from the SRlncRNA signature. Overall, this research contributes valuable knowledge towards advancing precision medicine in the context of TNBC.


Computer Simulation , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells , RNA, Long Noncoding , Triple Negative Breast Neoplasms , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Prognosis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Female , Treatment Outcome , Animals , Kaplan-Meier Estimate , Gene Regulatory Networks , Middle Aged , Cell Line, Tumor , ROC Curve , Gene Expression Profiling , Proportional Hazards Models , Immunity/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
13.
PeerJ ; 12: e17360, 2024.
Article En | MEDLINE | ID: mdl-38737746

Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.


Benzopyrans , Breast Neoplasms , Cadherins , Epithelial-Mesenchymal Transition , Twist-Related Protein 1 , Vimentin , Humans , Epithelial-Mesenchymal Transition/drug effects , Female , Cadherins/metabolism , Vimentin/metabolism , Vimentin/genetics , Cell Line, Tumor , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Benzopyrans/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , MCF-7 Cells , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Neoplasm Invasiveness/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Nuclear Proteins
14.
J Transl Med ; 22(1): 450, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741146

BACKGROUND: Estetrol (E4) is a natural estrogen produced by the fetal liver during pregnancy. Due to its favorable safety profile, E4 was recently approved as estrogenic component of a new combined oral contraceptive. E4 is a selective ligand of estrogen receptor (ER)α and ERß, but its binding to the G Protein-Coupled Estrogen Receptor (GPER) has not been described to date. Therefore, we aimed to explore E4 action in GPER-positive Triple-Negative Breast Cancer (TNBC) cells. METHODS: The potential interaction between E4 and GPER was investigated by molecular modeling and binding assays. The whole transcriptomic modulation triggered by E4 in TNBC cells via GPER was explored through high-throughput RNA sequencing analyses. Gene and protein expression evaluations as well as migration and invasion assays allowed us to explore the involvement of the GPER-mediated induction of the plasminogen activator inhibitor type 2 (SERPINB2) in the biological responses triggered by E4 in TNBC cells. Furthermore, bioinformatics analysis was aimed at recognizing the biological significance of SERPINB2 in ER-negative breast cancer patients. RESULTS: After the molecular characterization of the E4 binding capacity to GPER, RNA-seq analysis revealed that the plasminogen activator inhibitor type 2 (SERPINB2) is one of the most up-regulated genes by E4 in a GPER-dependent manner. Worthy, we demonstrated that the GPER-mediated increase of SERPINB2 is engaged in the anti-migratory and anti-invasive effects elicited by E4 in TNBC cells. In accordance with these findings, a correlation between SERPINB2 levels and a good clinical outcome was found in ER-negative breast cancer patients. CONCLUSIONS: Overall, our results provide new insights into the mechanisms through which E4 can halt migratory and invasive features of TNBC cells.


Cell Movement , Estetrol , Gene Expression Regulation, Neoplastic , Plasminogen Activator Inhibitor 2 , Receptors, Estrogen , Receptors, G-Protein-Coupled , Signal Transduction , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Cell Movement/drug effects , Cell Line, Tumor , Receptors, G-Protein-Coupled/metabolism , Receptors, Estrogen/metabolism , Estetrol/pharmacology , Estetrol/metabolism , Female , Plasminogen Activator Inhibitor 2/metabolism , Protein Binding/drug effects , Neoplasm Invasiveness
15.
Zhonghua Zhong Liu Za Zhi ; 46(5): 409-418, 2024 May 23.
Article Zh | MEDLINE | ID: mdl-38742354

Objective: This study aimed to develop a new delivery strategy that utilized metal organic framework (MOF) loaded with small-interfering RNA (siRNA) targeting ITGAV to overcome tumor matrix barrier, and thus enhance drug penetration and immune accessibility in breast cancer. Methods: MOF@siITGAV particles were constructed and characterized. The uptake of MOF@siITGAV in breast cancer cell line 4T1 was observed by the cellular uptake assay. The toxicity of MOF@siITGAV was detected by cell counting kit 8 (CCK-8). The blank control group, naked siITGAV group and MOF@siITGAV group were set. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect the expressions of ITGAV. The level of transforming growth factor ß1 (TGF-ß1) in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA). The penetration of MOF@siITGAV in 4T1 cells was tested by constructing 3D spheroids. Mouse models of triple negative breast cancer were established. The effect of MOF@siITGAV on the growth of transplanted tumors and main organs was verified. Imminohistochemical (IHC) was used to test the expression of collagen and CD8. Results: MOF@siITGAV particles were constructed with sizes of (198.0±3.3) nm and zeta potential of -(20.2±0.4) mV. MOF@siITGAV could be engulfed by 4T1 cells and triggered to release siRNA. Compared to the blank control group, the expression of ITGAV in the MOF@siITGAV group [(46.5±11.3)%] and the naked siITGAV group [(109.9±19.0)%] was lower. TGF-ß1 in the cell culture medium of the blank control group, naked siITGAV group, and MOF@siITGAV group was (474.5±34.4) pg/ml, (437.2±16.5) pg/ml, and (388.4±14.4) pg/ml, respectively. MOF@siITGAV could better penetrate into 4T1 spheroids and exhibit no obvious toxicity. The cell viability was (99.7±3.5)%, (98.2±5.2)%, (97.3±6.6)%, (92.1±8.1)%, and (92.4±4.1)%, respectively, after MOF@siITGAV treatment with the concentration of 0, 10, 20, 40, 80, and 160 µg/ml, respectively, for 24 h. The tumor growth in the MOF@siITGAV group was suppressed significantly. After 15-day treatment, the tumor volume of the MOF@siITGAV group was (135.3±41.9) mm3, smaller than that of the blank control group [(691.1±193.0) mm3] (P=0.025). The expression of collagen and the number of CD8 positive cells of the MOF@siITGAV group were lower than those of the other two groups. No significant abnormalities were observed in the main organs of mice. Conclusions: Targeting the integrinαv on the surface of cancer cells could destroy extracellular matrix, improve drug delivery, and increase immune infiltration.


Metal-Organic Frameworks , RNA, Small Interfering , Transforming Growth Factor beta1 , Animals , RNA, Small Interfering/administration & dosage , Mice , Female , Cell Line, Tumor , Metal-Organic Frameworks/chemistry , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Drug Delivery Systems , Mice, Inbred BALB C , RNA, Messenger/metabolism , RNA, Messenger/genetics
16.
J Mol Biol ; 436(10): 168569, 2024 May 15.
Article En | MEDLINE | ID: mdl-38604527

Transglutaminase 2 (TG2) performs many functions both under physiological and pathological conditions. In cancer, its expression is associated with aggressiveness, propensity to epithelial-mesenchymal transition, and metastasis. Since TG2 performs key functions both outside and inside the cell, using inhibitors with different membrane permeability we analyzed the changes in the transcriptome induced in two triple-negative cell lines (MDA-MB-436 and MDA-MB-231) with aggressive features. By characterizing pathways and gene networks, we were able to define the effects of TG2 inhibitors (AA9, membrane-permeable, and NCEG2, impermeable) in relation to the roles of the enzyme in the intra- and extracellular space within the context of breast cancer. The deregulated genes revealed p53 and integrin signaling to be the common pathways with some genes showing opposite changes in expression. In MDA-MB-436, AA9 induced apoptosis, modulated cadherin, Wnt, gastrin and cholecystokinin receptors (CCKR) mediated signaling, with RHOB and GNG2 playing significant roles, and affected the Warburg effect by decreasing glycolytic enzymes. In MDA-MB-231 cells, AA9 strongly impacted HIF-mediated hypoxia, including AKT and mTOR pathway. These effects suggest an anti-tumor activity by blocking intracellular TG2 functions. Conversely, the use of NCEG2 stimulated the expression of ATP synthase and proteins involved in DNA replication, indicating a potential promotion of cell proliferation through inhibition of extracellular TG2. To effectively utilize these molecules as an anti-tumor strategy, an appropriate delivery system should be evaluated to target specific functions and avoid adverse effects. Additionally, considering combinations with other pathway modulators is crucial.


GTP-Binding Proteins , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Humans , Transglutaminases/metabolism , Transglutaminases/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Transcriptome/drug effects , Gene Expression Profiling , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Membrane Permeability/drug effects , Enzyme Inhibitors/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism
17.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38612711

Breast cancer is the most common malignancy and its incidence is increasing. It is currently mainly treated by clinical chemotherapy, but chemoresistance remains poorly understood. Prefolded proteins 4 (PFDN4) are molecular chaperone complexes that bind to newly synthesized polypeptides and allow them to fold correctly to stabilize protein formation. This study aimed to investigate the role of PFDN4 in chemotherapy resistance in breast cancer. Our study found that PFDN4 was highly expressed in breast cancer compared to normal tissues and was statistically significantly associated with stage, nodal status, subclasses (luminal, HER2 positive and triple negative), triple-negative subtype and disease-specific survival by TCGA database analysis. CRISPR knockout of PFDN4 inhibited the growth of 89% of breast cancer cell lines, and the triple-negative cell line exhibited a stronger inhibitory effect than the non-triple-negative cell line. High PFDN4 expression was associated with poor overall survival in chemotherapy and resistance to doxorubicin and paclitaxel through the CREBP1/AURKA pathway in the triple-negative MDAMB231 cell line. This study provides insightful evidence for the value of PFDN4 in poor prognosis and chemotherapy resistance in breast cancer patients.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Aurora Kinase A , Prognosis , Breast , MCF-7 Cells
18.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38612760

IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.


Lung Neoplasms , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment , Lung Neoplasms/genetics , Interleukin-1alpha/genetics
19.
Genome Med ; 16(1): 55, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605363

BACKGROUND: Most primary Triple Negative Breast Cancers (TNBCs) show amplification of the Epidermal Growth Factor Receptor (EGFR) gene, leading to increased protein expression. However, unlike other EGFR-driven cancers, targeting this receptor in TNBC yields inconsistent therapeutic responses. METHODS: To elucidate the underlying mechanisms of this variability, we employ cellular barcoding and single-cell transcriptomics to reconstruct the subclonal dynamics of EGFR-amplified TNBC cells in response to afatinib, a tyrosine kinase inhibitor (TKI) that irreversibly inhibits EGFR. RESULTS: Integrated lineage tracing analysis revealed a rare pre-existing subpopulation of cells with distinct biological signature, including elevated expression levels of Insulin-Like Growth Factor Binding Protein 2 (IGFBP2). We show that IGFBP2 overexpression is sufficient to render TNBC cells tolerant to afatinib treatment by activating the compensatory insulin-like growth factor I receptor (IGF1-R) signalling pathway. Finally, based on reconstructed mechanisms of resistance, we employ deep learning techniques to predict the afatinib sensitivity of TNBC cells. CONCLUSIONS: Our strategy proved effective in reconstructing the complex signalling network driving EGFR-targeted therapy resistance, offering new insights for the development of individualized treatment strategies in TNBC.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Afatinib/pharmacology , Afatinib/therapeutic use , Cell Lineage , ErbB Receptors , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor
20.
Mol Cancer ; 23(1): 82, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664722

Triple-negative breast cancer (TNBC) stands as the breast cancer subtype with the highest recurrence and mortality rates, with the lungs being the common site of metastasis. The pulmonary microenvironment plays a pivotal role in the colonization of disseminated tumor cells. Herein, this study highlights the crucial role of exosomal LAP-TGF-ß1, the principal form of exosomal TGF-ß1, in reshaping the pulmonary vascular niche, thereby facilitating TNBC lung metastasis. Although various strategies have been developed to block TGF-ß signaling and have advanced clinically, their significant side effects have limited their therapeutic application. This study demonstrates that in lung metastatic sites, LAP-TGF-ß1 within exosomes can remarkably reconfigure the pulmonary vascular niche at lower doses, bolstering the extravasation and colonization of TNBC cells in the lungs. Mechanistically, under the aegis of the acetyltransferase TIP60, a non-canonical KFERQ-like sequence in LAP-TGF-ß1 undergoes acetylation at the K304 site, promoting its interaction with HSP90A and subsequent transport into exosomes. Concurrent inhibition of both HSP90A and TIP60 significantly diminishes the exosomal burden of LAP-TGF-ß1, presenting a promising therapeutic avenue for TNBC lung metastasis. This study not only offers fresh insights into the molecular underpinnings of TNBC lung metastasis but also lays a foundation for innovative therapeutic strategies.


Exosomes , Lung Neoplasms , Transforming Growth Factor beta1 , Triple Negative Breast Neoplasms , Exosomes/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Transforming Growth Factor beta1/metabolism , Acetylation , Animals , Female , Mice , Cell Line, Tumor , Tumor Microenvironment
...